
Observatory =amics

.r!ment m

Unclas

0326320

ht Center



_ z _. • _ __ _,_- _ _ __ -- __ _ _ .

i
i

£_E:_ - ,_ _ _ -- ___ - ........

_:L_ ___ _k m __, __

i

i

,,11-

II III I iiii i

•i I

i
i

m m

w



SOFTWARE ENGINEERING LABORATORY SEL-90-004

L

= •

,....-

w

p

Gamma Ray Observatory Dynamics
Simulator in Ada (GRODY)

Experiment Summary

SEPTEMBER 1990

National Aeronautics and

Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771



m

=_

i

,.1

qiJ

mm

i

I

i

I

I

I

I

m

I
o

Q_

I

__._-:_-_,._. , i i



FOREWORD

_s

: E

The Software Engineering Laboratory (SEL) is an organization sponsored by the
National Aeronautics and Space Administration/Goddard Space Flight Center

(NASA/GSFC) and created for the purpose of investigating the effectiveness of

software engineering technologies when applied to the development of applications
software. The SEL was created in 1977 and has three primary organizational

members:

NASA/GSFC, Systems Development Branch

The University of Maryland, Computer Sciences Department

Computer Sciences Corporation, Systems Development Operation

The goals of the SEL are (1) to understand the software development process in
th e GSFC environment; (2) to measure the effect of various methodologies, tools,

and models on this process; and (3) to identify and then to apply successful devel-

opment practices. The activities, findings, and recommendations of the SEL are
recorded in the Software Engineering Laboratory Series, a continuing series of

reports that includes this document.

The major contributors to this document are

T. McDermott (CSC)

M. Stark (GSFC)

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771
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ABSTRACT

m

This document is the final report on the Gamma Ray Observatory (GRO) Dynam-

ics Simulator in Ada (GRODY) experiment. This experiment involved the parallel

development of dynamics simulators for GRO in both FORTRAN and Aria for the

purpose of evaluating the applicability of Ada to the National Aeronautics and

Space Administration/Goddard Space Flight Center's (NASA/GSFC's) flight dy-
namics -environment.

GRODY successfully demonstrated that Ada is a viable, valuable technology for

use in this environment. In addition to building a simulator, the Ada team evalu-

ated training approaches, developed an Ada methodology appropriate to the flight

dynamics environment, and established a baseline for evaluating future Ada

projects.
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INTRODUCTION

The Software Engineering Laboratory (SEL) performed a study of Ada technology

by conducting a parallel develoPment effort for a flight dynamics simulator, a type
of system that is typically composed of approximately 50,000 source lines of code

(SLOC). The experiment was initiated in January 1985 with final analysis being

completed in June 1990.

OBJECTIVE AND SCOPE

The objective of the study was to assess the impact of Ada technology in a produc-

tion environment. The study involved two separate development teams, one using

Ada and the other FORTRAN, building simulators from the same specification.

The scope of the study is a comparison of these projects.

RESULTS

The results of the study are based on both objective and subjective measures of the

two projects. The primary results are listed as follows:

• Training for Aria is most effective when it ensures that developers under-

stand the software engineering principles embodied in Ada, the design

methodology to be used, Ada syntax and semantics, and any vendor-

specific features of the Ada environment, such as input/output details or

the library management system. Managers and reviewers also need

training.

• Effort distribution among life cycle phases was nearly unchanged.

Productivity measured as code development rate was slightly higher in

Ada. The Ada system consumed more effort since it was larger.
GRODY's extensive new technology development impacted both produc-

tivity and total effort.

Reliability was lower with Ada but was also primarily an effect of the
first use of Ada.

Design characteristics were very different with Ada. The Ada design

directly reflected software engineering principles, such as hierarchical
structure and information hiding.

Code required more source lines with Ada but was more readable.

Counting SLOC, the Ada system was 2.5 times larger than the

FORTRAN system; counting statements, it was 1.5 times larger.

6019
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Testing showed little difference between the two languages, which is to

be expected since the SEL performs functional testing that reduces the

impact of the implementation language.

Team satisfaction was higher with Ada. At the end of the project, the

Ada team requested assignment to Ada projects, and a number of the

FORTRAN developers also switched to Ada.

The General Object-Oriented Design (GOOD) Methodology was devel-

oped to meet the specific needs of the flight dynamics environment.
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SECTION 1--INTRODUCTION
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This document is the summary and final report on the Gamma Ray Observatory

(GRO) software development experiment. This experiment was conducted by the
Flight Dynamics Division's (FDD's) Software Engineering Laboratory (SEL) and

the Data Systems Technology Division. The experiment evaluated the suitability of

Ada for use in the flight dynamics area by developing, in parallel, two attitude

dynamics simulators for the GRO satellite, one written in FORTRAN (GROSS) and

one in Ada (GRODY).

This document collects and summarizes previously published results, with adjust-

ments in those eases where preliminary analyses were based on interim data that

differ from the final data. Appendix B lists the published articles and documents

that resulted from the study.

1.1 DOCUMENT STRUCTURE

This section provides the introduction and background for the experiment. Sec-

tion 2 presents the experiment's project plan, and Section 3 describes the experi-

ment and presents results.

1.2 EXPERIMENT BACKGROUND

This section describes the flight dynamics environment in which the SEL conducts

its experiments and the type of application developed during the GRODY experi-

ment.

1.2.1 The Flight Dynamics Environment

Software developed in the flight dynamics area is typically ground-based, non-

embedded, scientific (algorithmic) in nature. These applications include space-

craft attitude determination, attitude control, maneuver planning, orbit

determination, orbit correction, and mission analysis. Systems usually comprise

between 30,000 and 200,000 source lines of code (SLOC). Between 15 and

30 percent of the total source is typically reused from other projects.

The commonly used language has been FORTRAN. The SEL models of software

development, such as effort distribution by phase, reflect the history of using

FORTRAN. System specifications have implicitly assumed the traditional

function-oriented, structured, top-down decomposition approach to software devel-

opment.

1.2.2 Dynamics Simulators

Figure 1-1 illustrates the operation of a dynamics simulator. For each cycle of the

simulation, the onboard computer (OBC) model (on the right side of the figure)

6019
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uses sensor data to compute an estimated attitude. The estimated attitude is com-

pared with the desired attitude to calculate the attitude error. The OBC applies

control laws to generate commands for the attitude actuators to correct the attitude

error. The simulator truth model accepts the actuator commands, calculates the

actuator and spacecraft responses, and produces the true attitude of the spacecraft.

The truth model then uses the true attitude to produce sensor data that are sent to

the OBC. This completes one simulation cycle.

1.2.3 The Software Engineering Laboratory

The SEL was founded in 1977 as a cooperative effort of the National Aeronautics

and Space Administration/Goddard Space Flight Center (NASA/GSFC), University

of Maryland, and Computer Sciences Corporation (CSC). The goals of the SEL

are to understand software development in the flight dynamics environment, to

evaluate new software technology, and to insert appropriate technology into the

flight dynamics software development process.

The SEL has, over time, refined a set of data collection forms (Data Collection

Procedures for the Rehosted SEL Data Base, SEL-87-008) tailored to monitoring soft-

ware development in the flight dynamics area. Special data collection procedures

for the GRODY study are discussed in Section 2.3.3. One purpose of the GRODY

experiment was to initiate a baseline for evaluation of systems developed in Ada.
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SECTION 2--PROJECT PLAN
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The overall goal of the experiment was to develop insight into the applicability of

the Ada development methodology and language in the NASA software environ-
ment. The project plan identified six objectives as means of attaining the goal

along with sets of questions pertaining to each objective. Section 2.1 discusses the

objectives, and Section 2.2 lists the questions. The project plan is included in this

report as Appendix A.

The project plan should be considered as a charter, establishing which issues were

to be considered for study, rather than a set of minimum requirements. The ex-
perimenters were to refine and focus the investigation as they gathered information

and developed understanding.

2.1 EXPERIMENT OBJECTIVES

The objectives were to determine the following six items of interest:

• Cost effectiveness of adopting Ada in specified environments

Set of software measures useful in determining the advisability of adopt-

ing Ada for portions of the Space Station project

Trade-offs and characteristics of the potential impact of using Ada as a

development methodology and language

• Impact of Ada on the reuse of software

Profiles (characteristics) of the development process using Ada as op-

posed to using classical high-order languages

Effect of Ada (methodology and language) on productivity, reliability,

maintainability, reusability, and portability

The two highest priority objectives of the study were to understand the Ada devel-

opment process and to establish and evaluate baseline measurements for Ada de-

velopment. For the purposes of this report, the objective of determining the cost
effectiveness of Ada will be treated as a subset of determining the effect of Ada.

2.2 QUESTIONS TO BE ANSWERED

For purposes of exposition, this report has arranged the questions from the experi-

ment plan into questions with narrative answers and questions with quantitative

answers. The narrative questions are grouped under the objective of characterizing

the Ada development process; the quantitative questions are grouped under the

objective of determining the effects of Ada methodology and language.

6019
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2.2.1 Characterization of the Ada Development Process

Understanding the Ada development process was more difficult than envisioned in
the project plan. The plan reasonably expected, based on the Ada literature and
vendor offerings, that Ada methodology was sufficiently defined and available to
allow the experiment to import appropriate approaches to Ada development. One

effect of this expectation is the heavy concentration of questions concerning train-

ing.

Fortunately, the experimenters were allowed the flexibility to adjust the study. The
plan is nearly devoid of any questions concerning the proper use of Ada, although
some of the most valuable contributions were in the development of Ada methodol-

ogy.

2.2.1.1 TRAINING

The training questions were as follows:

• How expensive was the Ada training, and could training be more cost
effective?

How can Ada (versus other languages) training requirements be deter-
mined?

Are people with certain types of academic backgrounds and professional

experiences more readily adaptable to Ada?

Was the training sufficient or was it supplemented as problems devel-
oped?

Can a sufficient training program be developed from this experience?

How should training be improved?

2.2.1.2 THE ADA PROCESS

Three software development process questions were posed:

• Did the Ada project meet its deadlines?

• Can the impact of 'deleting' software heritage in specific environments
be assessed? _

Is the completed Ada code more readable and easier to comprehend than

other |anguages?

2.2.2 Effect of Ada Methodology and Language

The following questions are quantitative:

• What is the relative manpower cost of training, designing, coding, test-
ing, and changing Ada software versus FORTRAN software?

• What was the relative cost of each phase?

6019
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Excluding training, how did productivity on the two projects differ?

What was the change rate of software during the development (specifi-

cally, change and errors due to unfamiliarity with Ada)?

What was/he relative effort required for making a change? Fix an error?

How did the failures in the two developments differ in type and severity?

What is the relative effort required to implement a change in require-

ments?

2.3 PROCEDURES

The project plan included procedures for conducting the study. The following

sections discuss the organization of the experiment, data collection procedures,

and computer resources, with key quotations from the project plan.

2.3.1 Team Structure

The project plan defined the team structure for the experiment as follows:

Supporting this Ada experiment will be personnel from three distinct

installations--NASA/GSFC, CSC, and the University of Maryland. There

will also be three functional teams or groups that will be part of this

project; the Ada development team, the FORTRAN development team,

and the study group directing the experiments.

2.3.1.1 ADA DEVELOPMENT TEAM

The team responsible for the design, implementation and test of the dy-

namics simulator utilizing the Aria development methodology and lan-

guage will consist of approximately seven software developers. Each of

these people will be devoting a minimum of 1/3 time with an average of

1/2 time being allocated by each person. These resources are expected

to be provided from the following organizations. (It is estimated that the

project will continue at least through July of 1986.)

Throughout Ada development (including the training phase), 7.9 people per week

charged time to GRODY. The average time charged was 14.9 hours.

2.3.1.2 FORTRAN DEVELOPMENT TEAM

The team responsible for the implementation of the FORTRAN version

of the dynamics simulator will be comprised of personnel from CSC and

from Code 550. The project will be handled exactly as any other

6019
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development effort under the PC&A contract. The implementation team

will be comprised of the following:

Code 550: 3 developers, each allocating from 1/2 to full time on the

project.

CSC: 3 to 4 developers, each allocating from 1/2 time to full time.

It is not anticipated that any special interface or contact will be required

because of the nature of the experiment on the FORTRAN team. There

needs to be no interface with either the University of Maryland or with

Code 520. It is expected that SEL data will be provided, as usual, by the
FORTRAN team.

An average of 7.2 people per week charged to GROSS. The average time charged

was 16.6 hours per week. The GROSS and GRODY effort averages do not match

the subjective impressions of the nature of the two projects. GROSS was a produc-

tion product, with people assigned essentially full time. GRODY was characterized

by periods of intense activity separated by fallow periods.

2.3.1.3 ADA EXPERIMENT S_DY GROUP

The team responsible for defining, directing and analyzing the overall

Ada project experiment is to consist of staffing from GSFC, th_ Univer,

sity of Maryland and CSC. TfiiS team will be responsible for defining the

overall experiment (including measures, goals, training required, data to

be collected) as well as to analyze results. Specifically, the team will

Develop plans, goals, objectives and data to be collected

Define the procedures for carrying out the project

- Develop and write the overall project plan

- Develop and provide (or make available) all required training and

project preparations

- Monitor project development and recommend any required adjust-

ments (such as staffing, resources, training)

- Complete analysis of the project and develop report(s) describing

these results.

2.3.2 Team Interaction

There will be a close working relationship between the Ada development

team and:the Ada Experlmenter team. This= will include-::l_eriodlc

meetings to review status, difficulties, etc. in an attempt to identify

6019
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additional training needed or to identify and help in certain problems

with the Ada language or methodology.

Although there will be no attempt to completely isolate the FORTRAN

team from the Ada development team, there will be no attempt to en-

courage interaction. Formal procedures will be defined whereby require-

ments change, errors, and general modifications will be made known to
both teams in the same timeframe and format. No attempt will be made

to provide questions/answers generated by one team to the other team.

The designs, development methodologies, and general procedures of one

team will not be reviewed by the other team.

The only interaction between the FORTRAN team and the Ada Experi-

menters will be for the experimenters to periodically review the data and

information being recorded by the FORTRAN team.

2.3.1.4 COMPUTER SUPPORT

The project plan also defined the required Computer support. It should be noted
that all FORTRAN development took place on a VAX 11/780 and that the Ada

project migrated to a VAX 8600 during implementation.

In order to support the development efforts of the Ada project, computer

support required will be supplied in the following manner:

- VAX 11/780 Development Machine - time, terminals, and necessary
access will be supplied by the Code 520 VAX and by the Code 550
VAX. All team members are to have access to either machine on a

continuing basis. Accounts are to be provided to all team members
and managers on both computers. For the processors not normally

scheduled to be in operation on off-hours, special requests may be

made to access the processor at nights and/or weekends.

- Compilers/tools - Both VAX machines will house the same Ada

compiler and support environment.

2.3.3 Special Data Collection

The project plan included specific data collection procedures for the Ada project:

Programmer/Analyst Survey - All programmers, managers and librari-

ans will complete this form as soon as they begin work on the project.
This includes the Ada team and the FORTRAN team.

Resource Summary Form - This form will be completed on a weekly

basis, beginning on January 1, 1985, by all team members and managers.

Total weekly hours expended on the Ada project are recorded.

6019
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Computer resources will be provided by the librarian through the VAX

accounting.

Component Status Report - This form will be completed on a weekly

basis beginning January 1, 1985, by all team members. Personnel devot-

ing 100 percent of their project time to "management" will not complete
this form.

Component Origination Form - This form will be completed whenever a

particular "component" of the project is identified (design). An Ada

component is defined as a task, package or subprogram. The person first

identifying the component is responsible for completing the form.

Change Report Form (1 and 2) - Both the standard SEL change report

form, as well as the added page of questions will be completed by the

Ada team, The forms are to be completed for anychange/error defined

after a programmer has completed the component origination form. The

form will be completed by the individual making the change.

Project Estimation Form - This form will be completed by the project

technical manager each 6 weeks beginning in early January. The form

may be completed in consultation with other team members.

Project Header File Information Form - This form contains all of the

actual sizes and characteristics of the completed project. It will be com-

pleted once at project completion by the technical manager.

In addition tO the forms to be utilized to collect data, two additional sets

of information will be saved:

- Change/Growth History - Each week of the project, the support li-

brarian will record the number of lines of code, number of compo-

nents and total number of changes that have been made to the

source library.

- Sub!ective File Data - At the completion of the project, a set of

parameters which characterizes the development process and prod-

uct will be determined by the managers of the development effort.
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3.1 CHARACTERIZATION OF THE ADA DEVELOPMENT
PROCESS

This section presents responses to the narrative study questions. Training is con-

sidered first, followed by a discussion of activities in each of the life cycle phases.

3.1.1 Training

From the outset of the experiment, training was known to be central to successful

adoption of Ada technology. The project plan states "... training of the develop-
ment team is both very critical and very difficult. Responding to experiences of

other projects attempting to utilize Ada, an extensive effort is to be put forth in the

training of the Ada Team."

The training program included instruction in both the Ada language and design

methodologies. The training program consisted of four steps:

1. Reading Software Engineering with Ada by Grady Booch.

. Viewing a set of videotaped tutorials from Alsys, Inc. This took 40 hours
of classroom time, with class discussion following each tape.

.

.

Participating in a 3-day seminar on the Process Abstraction Method de-

sign methodology by George Cherry of Language Automation Associates.

Implementing a practice problem using the DEC Ada compiler. This

system was an electronic mail system comprising 5700 SLOC, 1400 of

which were executable. The practice problem took 1336 hours of effort.

The GRODY team found discussions in class, team meetings, and the practice

problem to be the most useful parts of the training. Unfortunately, the practice

problem was larger than it needed to be. The team felt a smaller exercise that

preserved the need to use packages and data abstraction would have been more

effective training.

The GRODY team found the following aspects of Ada to be either especially diffi-

cult or insufficiently covered by the training:

Input/Output (I/O)--Every training resource the team used was sketchy
on I/O operations. This is because efficient I/G is machine-dependent

and cannot be covered in general training.

Tasking--Tasking was covered by all of the training resources, but there

are specifics that the language definition leaves open to compiler writers'

6019
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interpretation. An example is how a "select" statement chooses among

multiple conditions. Some compilers always handle the first condition in

the code, while others make an attempt at fairness.

Generics--Generics are theoretically straightforward but caused problems

during the practice problem.

Data Types--This area needs special emphasis, especially for people

without a computer science background, since it is a primary mechanism

for information hiding. If the software engineering concepts behind data

types are not understood, not all the benefits of Ada will be fully real-
ized.

• Library Units and Library Structures--The concepts of separate compila-

tlon and pro-gra-_i-ii_braries were covered by_ thetra[ning but needed to be

augmented with specifics of the compiler vendor's library structure.

The CRODY study concluded that Ada training should cover not only the language

but also the related software engineering concepts, the chosen design methodology,

and, ideally, several other methods as well. Managers and reviewers should also

be trained in the design methodology to be used so they have a proper basis for

evaluating a project's progress. Specifically,, the study identified several levels of

training needed for an effective Ada team:

Ada syntax--How to construct code that the compiler will accept.
. = :

Ada semantics--How to construct programs that do what is intended.

• Design principles--How to analyze problems and synthesize solutions
that take advantage of Ada's features .....

• General methodologies--The more views a designer can apply to a prob-

lem, the more likely he or she is to produce a good design.

• Project methodology--Each team member must be intimately familiar

with the specific methodology that is selected for use on the project.

The

Q.

Ao

answers to the training questions are given below.

How expensive was the Ada training, and could training be more cost effec-

tive? Can a sufficient training program be developed from this experience?

Counting the practice problem, training consumed 2436 staff hours, or nearly

ii percent of the total-h0urs charged -forthe GRODY development. GRODY

tried multiple training approaches; a focused training program drawn from the

lessons learned on this experiment would almost certainly be more cost-

effective and efficient for flight dynamics.
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Q.

A.

Are people with certain types of academic backgrounds and professional

experiences more readily adaptable to Ada?

Table 3-1 lists the experience attributes of the two teams' The GRODY team

had more general software experience than the GROSS team but had less

experience with dynamics simulators. The Ada team knew twice as many

computer languages as the FORTRAN team, but polyglot programmers

proved to have no advantage in learning Ada. The Ada team reported that

prior experience with the specific concepts of exception handling and concur-

rency would have been beneficial. The answer to the question is that there

are no obvious ways to predict an individual's success with Ada.

Table 3-1. Team Experience

h--

H
N

m

QO

A.

Experience Factor

Years of software engineering
experience

Median number of applications
experience

Mean number of computer languages

Fraction of team with dynamics simulator
experience

GRODY GROSS

8.6 4.8

4 3

7.0 3.0

43% 66%

601g

Was the training sufficient or was it supplemented as problems developed?

The language-specific training was adequate. The methodological training

was sufficient for the methodologies taught, but those methodologies were not

sufficient for developing dynamics simulators. The team had to develop their

own methodology.

Q. How should training be improved?

A. Training can be improved by incorporating GRODY's lessons learned, such as

including specific flight dynamics insights, in the design training. Vendor-

specific training should also be included.

Q. How can Ada (versus other languages) training requirements be deter-

mined?

A. This question was not answered in the study.

6019
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3.1.2 Development Process

The greatest contribution of the GRODY experiment was the development of an

Ada methodology suited to the flight dynamics environment. The theme of the

following subsections is the search for, discovery, and refinement of that methodol-

ogy and its influence on the project life cycle phases.

Only one narrative question was asked about the development process:

Q. Did the Ada project meet its deadlines?

mq No, this was, however, an experimental artifact rather than an effect of using

Ada. The original schedule assumed that this experiment would be an evalu-

ation of existing Ada technology. As the project progressed, it became clear

that the Ada team would have to develop its own methods. Meeting the

schedule became less important. Figure 3-1 shows the original and final
schedules of GROSS and GRODY.

R

U

U

m

U

J

m

I

M

3.1.2.1 REQ_ME_ ANALYSIS

The specification and requirements documents provided the functional require-

ments of the simulator, They also contained a high-level design that was used for

the FORTRAN development. The documents are organized into subsystems that

correspond to the structure of the last several successful dynamics s_mulators. The

FOR.TRAN heritage was so strong that the experiment plan even contained an

abbreviated version of the design.

One goal of the study was to investigate Adadesign methods. It was clear that the

GRO dynamics simulator specification incorporated too much FORTRAN legacy to

permit the GRODY team to explore design options. Consequently, the team took

the time to recast the specification in a more language-neutral form. The team

used a specification approach called the Composite Specification Model (CSM)

(GuMelines for Applying the Composite Specification Model (CSM), SEL-87-003).

CSM represents a system's requirements with functional, dynamic, and contextual

views. The GRODY team had no trouble using CSM and felt that the new specifi-

cation represented the system requirements without imposing a language bias. The

specification exercise also allowed the team to become more familiar with the

system it was trying to develop. This was beneficial, since the team had minimal

experience developing dynamics simulators.

The GRODY team produced two documents from this requirements analysis

phase, a rewritten requirements specification and a requirements assessment re-

port.
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GROSS 'TTuJ

Dec. 29, 1984

ORIGINAL

May 30, 1987
F INAL

GRODY

Dec. 29, 1984
ORIGINAL

Oct. I, 1988

FINAL

J

Figure 3-1. Original and Final Schedules

Only one question was germane to the requirements analysis phase:

Q. Can the impact of "deleting" software heritage in specific environments be

assessed?

A, No, the effort data presented in Section 3.2 are inconclusive. There are costs

associated with experimenting with any new design or technology. GRODY

used both a new technology and a new design, but the costs were not explic-

itly counted. Perhaps a better way to phrase the question is to try to assess

6019
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the savings that flow from having a long history of using one technology and
design.

3.1.2.2 DESIGN

To try to fully exploit the Ada language, the GRODY team wanted to use a design
methodology that was well-suited to Ada and its particular features, such as

packages, information hiding, and tasks. The team explored, to the point of devel-

oping high-level designs, three different methodologies.

The first method used was developed by Grady Booch. It calls for translating a

textual specification into a design by underlining nouns and verbs in the specifica-

tion. The nouns map into objects, and the verbs map into operations. Booch

defines a graphic notation that includes symbols for packages, tasks, visible data

types, visible procedures, functions (or entities), and hidden code.

The second methodology investigated was the Process Abstraction Method for Em-

bedded Large Applications (PAMELA). PAMELA was developed by
George Cherry for use in real-time and embedded systems. PAMELA provides

symbols to represent primitive and nonprimitive processes, rendezvous between
processes, data flow, and limited control flow.

The third methodology, General Object-Oriented Design (GOOD) (General Object-

Oriented Development, SEL-86-002), was developed by the team itself, beginning

during project training and continuing throughout design. This method tries to

combine the best features of the other two methods while expanding and generaliz-

ing the techniques. The methodology's notation, called object diagrams, provides

symbols for objects, control flow between objects, and the decomposition of objects

into lower level objects. Object diagrams illustrate the control structure of the

system, and the object descriptions define the data flow in the various operations.

Object diagrams are drawn with the senior-level controlling objects at the top of the

page and the junior-level controlled objects below them. This serves as a graphic

mechanism for demonstrating system hierarchy.

The GRODY team selected the GOOD methodology because it best fit its needs.

The object diagram methodology was used to complete preliminary design and
detailed design.

The GRODY team had some difficulty with life cycle phase boundaries, since the
SEL guidelines are tailored to FORTRAN developments. The GRODY design re-

views were schedule-driven, rather than occurring when the design was ready for
review.

The GRODY team presented its preliminary design review (PDR) 1 month into

design, using GOOD notation. The team presented its critical design review

(CDR) 4 months later. NOt all package specifications had been written at CDR,

obviating the benefits of having the compiler check static interfaces during design.

6019
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Part of this delay was a duplication of effort needed to translate "object descrip-

tions" into Ada package specifications. This was essentially mechanical transcrip-

tion and could have been avoided by using Ada itself as the design notation.

The method of building object diagrams was not as explicit as either the Booch

approach or PAMELA, but it was guided by the principles of information hiding,

abstraction, and design hierarchy. A few problems were noted with the design.

The strong coupling between some of the objects was not effectively shown by the

early design notation. The notation was modified to show these relations. In fact,

the design methodology evolved throughout the design period.

The following conclusions were drawn from the design phase of this study:

Training is important. Ada training should cover not only the language

but also the related software engineering concepts, the chosen design

methodology, and, ideally, several other methods as well. Managers and

reviewers should have some training in the design methodology to be
used.

• Specification should not constrain design.

• An appropriate methodology is important. The methodology chosen for

a project should fit the problem. PAMELA, with its emphasis on concur-

rency, was not appropriate for GRODY.

• Ada documentation is different thanFORT_ documentation.

• Designing with Ada may imply different phase boundaries. At a mini-

mum, the definition ofpKases and the products expected from each

phase should be clear.

• Changing to a new technology imposes additional costs.

• Package specifications should be used in place of object descriptions.

3.1.2.3 IMPLEMENTATION

The GRODY implementation phase began with completion of the design work,

specifically writing package specifications and program design language (PDL).

The package specifications were compiled to find any static interface errors.

The GRODY design called for a global types package that defined types used

throughout the system. Design of the types package was not complete prior to the

start of implementation, so that the definition of new types or modification of

existing types as implementation progressed forced the rec0mpilation of large parts

of the system. In retrospectl-designshouldlncorp0rate an abstract data type analy-

sis to control the proliferation of data types. Starting from a small set of general

types, families of subtypes could be generated, allowing the reuse of properties of

the general type.
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The GRODY design led to a system that, once implemented, was highly intercon-

nected. It appears that while object-oriented design allows partitioning into in-

dependent subsystems, using object-oriented techniques does not automatically
lead to good partitioning.

Another design problem that emerged during implementation was that the func-

tionality allocated to procedures was not well communicated. During design, func-

tions were allocated to packages, but not explicitly to procedures. Prologs
described the function of procedures but did not describe the algorithm to be im-

plemented.

The design was also vague on tasking issues. Control of rendezvous interactions

was not made explicit nor were conditions for task termination. Together with the

team's general lack of experience with tasking, these ambiguities made the imple-
mentation of tasks difficult.

The GRODY team decided to use nesting, rather than library units, as the primary

structuring mechanism of its code. A library unit is defined as the outermost

specification in a file for a package or procedure. Nesting is the encapsulation of
specifications of a package, subprogram, or task inside the body of another pack-

age, subprogram, or task. While nesting seemed to be the most natural expression

of the design, it caused problems during development and testing. GRODY library

units were used for the top three or four levels of the design, while nesting was
used another 8 to 10 levels below that.

The primary disadvantage of nesting during implementation was that it increased

the amount of recompilation required. The compiler assumed compilation depend-

encies between sibling nested entities, whether the dependency existed or not.

Nesting complicated testing since it was not possible to execute the encapsulated
objects independently. Furthermore, it was not easy to identify the caller of nested

modules. It is now believed that extensive use of nesting instead of library units
will make maintenance more difficult.

The GRODY experience highlights the need to develop package specifications and

PDL during design phase. This would require lengthening the design phase and
delaying CDR, The separati0/a 0fpackage specific:ati0ns from bodies was consid-

ered beneficial, and the GRODY team recommended that specifications should be

under configuration control at the start of implementation.

The following lessons were learned during the implementation phase of the study:

• Design should be completed to the level of package specifications and
PDL before Startlng implementation, even if the design phase has to be

lengthened.

Library units, as opposed to nesting, should be used as the primary code

structuring mechanism.
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• If tasks are used, the design must make rendezvous interactions and task

termination conditions explicit.

• The use of object-oriented design does not, in itself, ensure good parti-

tioning of the system into subsystems.

Q. Is the completed Ada code more readable and easier to comprehend than

other languages?

A. Yes, team members reported that Ada was much easier to read.

3.1.2.4 SYSTEM TEST

System testing included completing the integration of modules developed during

implementation. The system test plan for GRODY was based on the system test

plan for GROSS. This seems reasonable, since system testing should be based on

the functional specification, not on the details of the implementation. There was

no need to consider Ada or object-oriented design in the test plan.

In general, little difference occurred in Conducting system tests between the

FORTRAN and Ada systems, since neither the execution of tests nor the interpre-

tation of results required knowledge of the system's internals. However, three Ada

features required special attention.

The first feature was exception handling. The team had difficulty inducing condi-

tions that would cause some of the system's exceptions to be raised. Although

some exceptions were difficult to test, the team felt that exceptions were useful in

error handling.

The second feature was the coordination of concurrent tasks for testing. Testing

concurrency requires keeping track of the state of multiple parallel operations that

are not necessarily synchronous. Concurrency is a challenge to test in any lan-

guage; but Ada, unlike FORTRAN, has support for concurrency. Therefore, in

some sense, this is an Ada issue.

Finally, the Ada rename feature:occas|onal|y caused confusion during debugging.

This was more a failure of the debugger than a deficiency of the language. DEC

agreed that the debugger should be fixed.

The following lessons were learned from system testing:

• Preparation and execution of system tests was not affected by the pro-

gramming language.

• A good repertoire of tools is important. The symbolic debugger was
invaluable.

• Ada may reduce some types of errors. Team members consistently re-

ported that the compiler detected many of their interface errors. Objec-

tive data neither confirm nor contradict this assertion.
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Ada may be easier to debug. Team members reported Ada's readability

made finding errors easier. Objective data neither confirm nor contradict
this assertion.

• Recompilation of Ada units can have a significant cost.

3.2 EFFECT OF ADA METHODOLOGY AND LANGUAGE

This section presents the quantitative results of the GRODY study. These numeri-

cal results are included for completeness, but they are peripheral to the GRODY

project's major contributions to advancing software engineering at NASA in

particular and in the broader software community in general. GRODY's contribu-

tion was the development and dissemination of practical techniques for building

Ada software and showing how ideas that had been largely theoretical could be

applied to real problems.

The statistics and graphs in this section are presented in answer to specific ques-

tions in the project plan. At first glance, they seem to indicate that Ada would

make a poor candidate for the language of choice for flight dynamics software

developments. This conclusion would be valid only if the two projects were doing

the same thing and had equally well-controlled processes. Neither of these condi-

tions were true for this study.

The two teams did different things. The GROSS team was building an operational

product. The GRODY team was developing software technology. The experiment

plan expected that appropriate Ada technology was available and that the experi-

ment could be a side-by-side comparison. Ada technology was not sufficiently

mature, and the GRODY team had to invent it. As a result, the information pre-

sented here does not so much reflect the relative merits of the two languages as it

contrasts product development with technology development.

The second point follows from the first. The GROSS task (product development)

was well understood with a defined set of measures, warning indicators, and cor-

rective actions. The GRODY task (technology invention and insertion) was, by

definition, exploratory and ad hoc. Drawing conclusions from such different proc-
esses is tenuous.

For additional perspective on the weight tfiat Should be put on the GRODY num-

bers, consider the following quote from Dr. Jerry Page from a presentation to the

Sixth (1981) Software Engineering Workshop about the SEL's evaluation of an-

other technology new to the SEL environment:

To qualify this, our experience with many methodologies has been as
follows:

The first time a methodology is applied, mistakes are made (and we

made mistakes), and many of the potential benefits or advantages of

the methodology are not realized.
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- The second time a methodology is applied, there is a tendency to

overcompensate for the things that you did worst the first time, and

the methodology still does not work as well as it potentially could.

- The third time a methodology is applied, you lower your expecta-

tions somewhat or modify them, and you home in on what is right

for your environment.

relevant questions from the project plan are addressed as follows:

What is the relative manpower cost of training, designing, coding, testing,

and changing Ada software versus FORTRAN software?

This question asks the amount of time charged to each activity, regardless of

the phase in which the activity occurred. Table 3-2 presents the staff-hours

recorded in the SEL data base for eachactivity. The "Other" category covers

the hours for attending meetings, writing documentation, and other necessary

but hard to categorize activities.

Table 3-2. Staff Hours by Activity

Activity

Training

Requirements analysis

Design

Implementation

System test

Acceptance test

Other

Total

Staff-Hours (Percent)

N/A

1311

2224

4253

1562

1053

4762

15165

FORTRAN

N/A

8.6%

14.7%

28.0%

10.3%

6.9%

31.4%

2436

499

5679

6645

2724

23

5020

23026

Ada

10.6%

2.2%

24.6%

28.8%

11.9%

0.1%

21.8%

6019

This table contains severa! interesting points. GRODY bears out the expectation

that Ada projects will devote more time to up-front activities (requirements analy-

sis and design) than will FORTRAN projects, but only if these two activities are

combined. The hours for GRODY's requirements analysis seem unrealistically

low, given that GRODY recast the specification into CSM while GROSS was

60i9
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relying on a history of experience and the FORTRAN heritage of flight dynamics.
It seemslikely that the effort spent on CSM was recorded under a different activity
category, probably training. The GRODY training phase consumedalmost 11 per-
cent of the effort at project inception, and this further clouds evaluating the distri-
bution of effort on remaining project activities. Implementation effort is
comparable between GROSSand GRODY. The combined testing phasesdiffer by
only 5 percent, but this result is clouded by the lack of GRODY acceptancetesting.

The overall similarities between the statistics imply that at least on early Ada

projects, effort distribution by activity will not differ markedly from that on

FORTRAN projects.

Q. What was the relative cost of each of the phases?

A. Table 3-3 lists the technical and line management hours charged during each

phase of the two projects.

Table 3-3.

Phase

Training

Requirements analysis

Staff-Hours by Phase

N/A

849

Staff-Hours

FORTRAN

N/A

5.6%

(Percent)

Ada

3346

54O

14.5%

2.3%

Design

Implementation

System test

2830

5397

2315

18.7%

35.6%

15.3%

2987

11174

4968

13.0%

48.5%

21.6%

Acceptance test

Total

3774

15165

24.9% 11

23026

0.0%

6019

Table 3-3 shows one important datum. GROSS spent one-quarter of the project's

effort in acceptance test phase. This was an effect of the Challenger Space Shuttle
disaster. Challenger was lost a few months before GROSS entered acceptance

test|ng, which caused the groundirig of the shuttle fle-et-a_-_n indefinite postpone,

ment of the GRO launch. GROSS no longer faced operational deadlines. The
acceptancetest phase doubled from 6 months to 1 year, and GROSS implemented

6019
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a large number of specification modifications and enhancements.

mented some, but not all, of these changes.

Q.

A°

GRODY imple-

Excluding training, how did the productivity on the two projects differ?

Productivity is the amount of product developed per unit of effort. Therefore,

to answer the question, the sizes of the two systems and the effort expended

in building them must be determined. Table 3-4 presents the relative sizes of
= = :s

Table 3-4. Size Measurements

2-=

h

-'55

m

m

m

Q°

A*

Measure GRODY GROSS Ratio

SLOC

Statements

Developed LOC

Developed statements

Comments

128261

40561

125715

39868

20700

51704

27642

39692

22695

22409

2.5:1

1.5:1

3.2:1

1.8:1

601g

the two systems. SLOC is, in the SEL, a count of ali physical lines in the

program. Statements is a count of complete instructions; an assignment state-

ment continued over three physical lines counts as one statement. Developed

:SLOC and statements are measures that account for savings from reuse.

Developed SLOC (or statements) are computed by counting all new and ex-

tensively modified code and adding 20 percent of the unchanged and slightly

modified code. GRODY had 2 percent reuse; GROSS had 29 percent reuse.

Table 3-4 shows that a system implemented in Aria is bigger than a cor-

responding FORTRAN system. Counting statements, which should elimi-

nate most coding style differences, GRODY was 50 percent larger than

GROSS. An unexpected observation was discovered that the Ada system

had fewer comment lines than the FORTRAN system ....

Table 3-5 presents productivity rates. Even with higher productivity,

GRODY required more effort because of the larger size. This is seen by

applying the rates of Table 3-5 to the raw sizes in Table 3-4. The Ada

team would need between 32 and 42 percent more effort than would be

needed to build a FORTRAN system with no reuse.

What was the change rate of software during the development (specifically,

change and errors due to unfamiliarity with Ada)?

Figures 3-2 and 3-3 present the changes made to each system, arranged by

the type of change and the phase in which the need for the change was

6019
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Table 3-5. Productivity

Excluding Training

Dev LOC per hour

Dev statements per hour

GRODY

6.4

2.0

Excluding Training and Acceptance Test

GRODY

Dev LOC per hour 6.4

Dev statements per hour 2.0

2.5

1.5

GROSS

3.4

1.9

M

B

m

m

601g

14O

O
O

120-

100-

80-

60"
r-
(0

0-

20-

0
ERR REQ ENH' CLR'DBG USR' ENV'OTH' OPT

Change Type

Figure 3-2. GROSS Changes by Type and Phase

/
Code

System

Accept

III

!B

lib

I

lib

I

m

iiil '

6019

3-14
m

I



z
r"

O
O
t_

t--

t-
O

14°I
Code

120-

System

1O0-

Accept
80-

60-

40-

20-

0
ERR REQ ENH CLR DBG USR ENV OTH OPT

Change Type

O.

A.

6019

Figure 3-3. GRODY Changes by Type and Phase

determined. Two things are apparent: GRODY made more changes, and

GRODY made changes for more diverse reasons. GRODY's top three types

of change (error correction, enhancements for clarity and maintainability, and

implementations of user services) all point to an exploratory project, espe-

cially when compared to GROSS. GROSS made nearly as many requirements

changes as error corrections. GRODY recorded only a few changes due to
Ada causes.

What was the relative effort required for making a change? Fix an error?

Figures 3-4 and 3-5 present the effort required to make a change. Figures 3-6

and 3-7 present the effort required to fix an error. SEL records this data in

two types of effort in four classes. The types are effort to isolate the change

(error) and effort to complete the change (error). The four classes are

• Less than 1 hour

• More than 1 hour but less than 1 day

• Between 1 and 3 days

• More than 3 days

These figures show two items of note. First, GROSS tends to have a larger

fraction of changes and errors that took 1 hour to isolate and 1 hour to
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complete. Second, GROSS's severe changes and errors (the 3-day and N-day)

tended to occur in acceptance testing. This is a likely effect of the protracted

acceptance test schedule.

1O0
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501 ......

_ 40 .......
w

30 ......

 ot-k !10-_

o , , --.
1HR 1 DAY 3DAY NDAY

13me to Complete

Figure 3-6. GROSS Effort To Repair Errors

Q. How did the failures in the two developments differ in type and severity?

A. The answer to the previous question addressed the severity of errors. Fig-

ures 3-8 and 3-9 illustrate the sources and classes of errors. Again, the

pattern is seen of GROSS being well under control with the bulk of the errors

coming from code, while GRODY is more exploratory. Note that GRODY

had significant numbers of errors coming from design and previous changes.

The classes of errors illustrate the GRODY team's lack of experience with

both the application and Ada.

Q. What is the relative effort required to implement a change in requirements?

A. Figures 3-10 through 3-13 show that GROSS had more difficulty with require-

ments changes. However, two confounding factors exist. First, many of the

changes occurred during acceptance testing, and it is not known how well the

Ada team would have done with late requirements changes. Second, GRODY

did not implement all the requirements changes that GROSS did. It is not

known, on a change-by-change basis, the difficulty that each project had with

each change. Consequently, firm conclusions can not be drawn about the

effect that the implementation language had on implementing requirements
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changes. It can be noted that these results do not reflect only the differences

in the languages, but also large differences in the nature of the two projects.
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APPENDIX A--AN EXPERIMENT WITH ADA--THE GRO

DYNAMICS SIMULATOR PROJECT PLAN (APRIL 1985)
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A.1 PROJECT DESCRIPTION

The overall goal of the Ada/FORTRAN software development project is to develop
insight into the applicability of the Ada development methodology and language
into the NASA software environment. To determine the potential application of
Ada, a set of measures, objectives, questions, and detailed data must be defined.

A.I.1 Objectives

The following objectives have been developed as a mechanism toward attaining the
overall goal stated above:

• Determine the cost-effectiveness of adapting Ada to specified environ-

ments (e.g., NASA ground systems)

• Develop a set of software measures useful in determining the advisability
of adapting Ada to portions of the Space Station project

• Develop tradeoffs and characteristics of the potential impact of using
Ada as development methodology and language (e.g., training,
standards, etc.)

• Determine impact of Ada on the reuse of software (reusable software
concepts)

• Develop and assess profiles (characteristics) of the development process

using Ada as opposed to using classical high-order languages

• Determine effect of Ada (methodology and language) on

1. Productivity

2. Reliability

3. Maintainability (effort to change and effort to repair)

4. Reusability

51 Portability

A.1.2 Questions To Be Addressed

To attain the objectives defined, a series of questions must be addressed.

the questions to be raised follows:

Cost Effectiveness

1.

A list of

What is the relative manpower cost of designing, coding, testing, chang-

ing Ada software vs. FORTRAN software?

6019
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. Excluding training, how does the staff effort for the Ada project differ

from the FORTRAN project?

3. Does the machine expense differ?

4. Did the Ada project meet its deadlines? (FORTRAN project?)

5. How expensive was the Ada training? Could it be made more cost-
effective? .......... _: ......

6. How did the productivity on the two projects differ?

Measures for Space Station

o Are the measures for determining quality and cost effectiyeness of Ada
identical to or Similar to the high-order language measures?

. Are there measures to determine the application of Ada to varying envi-

ronments typical of NASA (size, machine type, application type, etc.)?

3. Can the Ada methodology be applied and assessed even if the language

were not used for implementation?

4. How can the 'readiness' of Ada environment, including computers, tools,

and methodologies, be determined?

5. How are training requirements determined in Ada? Vis-a-vis, those for

other candidates (HAL/S, C, etc.)

6. Can the impact of 'deleting' software heritage in specific environments

be assessed (reused design, code, etc.)?

7. Are there metrics that effectively distinguish between functional and

object-oriented design and display the advantages of using either

approach?

o Are there metrics that can be applied to both Ada and FORTRAN proj-

ects so that they can be compared directly?

, Which metrics best predict the effort that will be necessary to produce

the Ada system?

Characteristics/Tradeoffs

1. Are people with certain types of academic backgrounds and professional

experiences more readily adaptable to Ada? (What types?)

2. How difficult is the transition between Ada environments for the pro-

grammer?
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3. Is the documentation for the Ada environments adequate enough that the

users do not need to contact an Ada expert for help?

4. Would it be possible, and reasonable, to develop an Ada system without
an Ada consultant onboard for help?

5. Was the training sufficient or was it supplemented as problems devel-

oped? From the experience, can a sufficient training program be devel-

oped?

6. How should the training be improved?

7. What features must be included in an Ada environment if it is to be used

by NASA?

8. Which features in an Ada environment are least used at NASA?

Reuse of Software

1. How much of the design and code could be used from GRO to develop a

simulator for ERBS (or any new simulator)?

2. Were the packages designed to be reused?

3. Were the specifications defined in sufficient generality?

4. Were generics used appropriately?

5. Were implementation details hidden?

6. In retrospect, would the designers create some parts to be more readily
reused?

7. If they were developing a similar system in Ada, how much of the system

would the designers reuse?

8. Is the completed Ada code more readable and easier to comprehend than

other languages?

Profiles of Development

1. What is the relative effort expended in training, design, code, testing,
etc.?

2. What computer resources were used compared to the FORTRAN project?

3. What was the change rate of software during the development (specifi-

cally, change and errors due to unfamiliarity with Ada)?

4. What was the error rate for each system?

A-3
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5. What was the relative effort required for making a change? Fix an error?

6. How did types of faults differ in the systems?

Effect on Productivity

1. What was the relative cost of each phase?

2. In the delivered product, were there more or fewer failures using the Ada

system?

3. How did the failures in the two developments differ in type and severity?

4. How much effort would be needed to transport the system to another

machine with the same Ada environment? (Different environment)

5. What is the relative effort required to implement a change in require-

ments?

A.1.3 Data To Be Collected

To respond to the questions raised in Section A.1.2, data must be collected from

both development teams as well as from other sources (source code, design, man-

agers, etc.). The data to be collected are defined in Section A.4.2.

A.2 PROBLEM DESCRIPTION

A.2.1 Description

The overall function of the simulator is to be able to receive ground commands

and environmental information and, _in turn, _ to model the performance of the on-

board logic that is attempting to maintain some specified spacecraft attitude by

generating commands for actuators and thrusters.

The dynamics simulator required to support the GRO Project will satisfy several

major functions. First, the simulator is needed to validate software that is to fly

onboard GRO. Second, it is needed to study the performance of the attitude con-

trol system onboard and to train operational control center personnel by simulating

responses to particular commands and by simulating responses to various space-

craft: phenomena, such as a failed sensor or actuator.

The simulator is given all the physical characteristics of GRO and then is required

to model the dynamics of the satellite, given a varying set of conditions. Typical

dynamic simulators have five major components:

1. Model of the onboard computer (OBC) - Attitude Control System

2. Sensor and spacecraft model (truth models)
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3. Environment model (torques and ephemerides)

4. Input/Output Control System

5. Postprocessor

This particular project is similar in concept to the one developed to support the

ERBS mission (launched in 10/84), except the ERBS did not have an OBC (it had

an analog control system) while the GRO mission is flying the NASA Standard

Spacecraft Computer (NSSC-1). Both simulators are required to perform functions

described by the listed five major components.

A.2.1.10BC MODEL

This portion of the system simulates the functions that are performed by the flight

computer (or control system), the NSSC-1. It must produce actuator commands

and telemetry information, given sensor readings and ground commands.

A.2.1.2 SENSOR AND SPACECRAFT MODEL - (TRUTH MODEL)

This component is required to model the response of the spacecraft hardware (e.g.,

sensors) based on ephemeris data, environmental data (e.g., magnetic field read-

ings), and current state and commands for the OBC.

A.2.1.3 ENVIRONMENTAL MODELING (PROFILE)

The major function of this portion is to determine the torques acting on the space-
craft based on normal attitude and orbit information as well as spacecraft charac-

teristics. This portion also determines the ephemeris and magnetic field

information as well as star positions.

A.2.1.4 INPUT/OUTPUT CONTROL SYSTEM (SCIO)

This set of requirements defines the controlling function for both the truth model

and the OBC. This system is also the interface and control with the user.

A.2.1.5 POSTPROCESSOR

It is a requirement to produce various CRT displays as well as plots and some
statistical information from a simulator run. In past systems, this was handled as a

separate function in the simulator.
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A.2.2 Size Characteristic

Based on previous projects, an estimate of the full
FORTRAN, follows:

Modeling of onboard-processing
Truth model

Profile program
Input/output control
Postprocessor

system, when developed in

(Lines of FORTRAN Code

with Comments)

10,000
12,000

6,000
10,000

2,000

A.2.3 Requirements Development

The functional requirements for the GRO Dynamic Simulator are developed by the

Flight Dynamics Analysis Branch (Code 554) and are delivered to the Systems

Development Branch (Code 552) for implementation. After delivery, the require-
ments are considered to beunder configuration contr0i, and any modifications

must go through a formal change process followed by both branches.

A.2.4 Responsibility of Development Team

The implementation team is given the functional requirements and then is respon-
sible for carrying out the full development of the software. The team is responsi-

ble for design, code, test certification, and documentation. The final product is
typically delivered to the Flight Dynamics Analysis Branch; but for this project, an

internal acceptance test and delivery will be made.

A.3 PROJECT MANAGEMENT STAFFING

Personnel from three distinct installations--NASA/GSFC, CSC, and the University

of Maryland will support this ADA experiment. Three functional teams or groups

also will be part of this project: the Ada development team, the FORTRAN devel-

opment team, and the study group directing the experiments.

A.301 Team Structure

A.3.1.1 ADA DEVELOPMENT TEAM ....

The team responsible for the design, implementation, and test of the dynamics

simulator using the Ada development methodology and language will consis:, of

approximately seven software developers. Each developer will be devoting a mini-

mum of 1/3 time, with an average of 1/2 time allocated by each person. These

resources are expected to be provided from the following organizations. (It is

estimated that the project will continue at least through July 1986.)
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Code 520--Two developers, each allocating between 1/2 to 3/4 time.

These people will charge to a Code 520 charge account.

Code 550--Two developers, each allocating between 1/2 to 3/4 time.

These people will charge to the Code 550 Code T RTOP.

CSC (via Task 455)--Three developers, each allocating 1/2 to 3/4 time.

These charges will be covered by Task 455, which is funded and man-

aged by Code 552. CSC will also participate in funding for half this

effort.

The management of the Ada implementation will be as follows:

• Overall project management--McGarry (550)/Nelson (520)

Responsibilities include the allocation of resources (including manpower, funding,

computer resources, etc.), setting of schedule/milestones, coordination of require-

ments availability, and general interface to all other organizations and teams. Also

respons_le for coordinating the measures and general experimental information

required.

• Technical Direction--Agresti (CSC)

Responsible for specific implementation of the problem using the Ada approach.

Makes specific technical assignments to team members, reviews specific work

(code, design, testing, etc.), takes an active part in the design, code and general

development and, in general, acts as Chief Programmer of the team.

• Training and Methodology Development--Basili (University of Maryland)

Responsible for developing all required training and for directing the overall meth-

odology to be followed by this team.

Additional consultation support will also be available. Through a support contract,

Code 520 will provide additional Ada expertise (Aria Soft Inc.) for use by the

development team. This consultation will be available to review designs, develop-

ment approaches, and general problems with Ada. The extent of their availability

will be determined by Code 520.

A.3.1.2 FORTRAN DEVELOPMENT TEAM

The team responsible for the implementation of the FORTRAN version of the

dynamics simulator will be comprised of personnel from CSC and from Code 550.

The project will be handled exactly as any other development effort under the

PC&A contract. The implementation team will be comprised of the following:

Code 550--3 developers, each allocating from 1/2 to full time on the project.

CSC--3 to 4 developers, each allocating from 1/2 time to full time.

A-7
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The management of the FORTRAN implementation:

• Overall Project Management--Behuncik/Garrick (550)

• Technical Direction--Garrick/550 and Task Leader at CSC

It is not anticipated that any special interface or contact will be required because of

the nature of the experiment oh the FORTRAN team. There need to be no inter-

face with either the University of Maryland or with Code 520. It is expected that

SEL data will be provided, as usual, by the FORTRAN team.

This effort will be completely funded and controlled by Code 550.

A.3.1.3 ADA EXPERIMENT STUDY GROUP

The team responsible for defining, directing, and analyzing the overall Ada project

experiment will consist of staffing from GSFC, the University of Maryland, and

CSC. This team will be responsible for defining the overall experiment (including

measures, goals, _ training required, data tobe collected) as well as to analyze re-

sults. Specifically, the team will

• Develop plans, goals, objectives, and data to be allocated

Define the procedures for carrying out the project

Develop and write the overall project plan

Develop and provide (or make available) all required training and project

preparations

Monitor project development and recommend any required adjustments

(such as staffing, resources, training)

Complete analysis of the project and develop report(s) describing these

results

This team will consist of the following staff:

GSFC--Code 550

GSFC--Code 520

Univ. of MD

A.3.2

CSC

Resources

F. McGarry (1/10 time)

R. Nelson

V. Basili (1/10 time)

E. Katz (1/2 time)

W. Agresti (1/10 time)

Sources of funding to cover required staffing, training, computer support, etc., will

include GSFC (Codes 520 and 550) and CSC.
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A.3.2.1 STAFFING

Ada Development Team

Code 520 Support--All 520 costs (technical developers and managers)

will be charged to a Code 520 job order number.

Code 550 Support--All 550 in-house costs will be charged to the Code T

RTOP, Software Engineering (310-10-23)

CSC Support--Task charges will be covered by the Code 550 task, which

is paid by the Code T RTOP (310-10-23). CSC will also pay for half the

manpower required by the Ada development team.

A.3.2.1.2 FORTRAN Development Team

The entire FORTRAN staffing effort will be the responsibility of Code 550. Inter-

nal costs will be charged to a Code 550 JON, and all CSC costs will be charged to

the Code 550 task.

Ada Experiment Study Group

Code 550 Support--Suppor_t will be charged to the Code T

RTOP 310-10-23.

Code 520 Support--Support will be charged to a Code 520 JON.

CSC Support--All CSC charges will be covered by the Code 550 task for

the project.

University of MD--AII charges will be covered by the Code 550 grant

with the University of ME) (NSG 5123).

A.3.2.2 COMPUTER SUPPORT

To support the development efforts of the Ada project, computer support

will be supplied in the following manner:

VAX 11/780 Development Machine--Time, terminals, and necessary ac-

cess will be supplied by the Code 520 VAX and by the Code 550 VAX.

All team members are to have access to either machine on a continuing

basis. Accounts are to be provided to all team members and managers

on both computers. For the processors not normally scheduled to be in

operation during off-hours, special requests may be made to access the

processor at nights and/or weekends. Computer time expense will be

completely covered by the respective divisions.

Compilers/tools--Both VAX machines will house the same Ada compiler

and support environment.

A-9
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The DEC compiler will be purchased by Code 520 for its VAX and by Code 550

for its VAX.

A.3.2.3

Expense

TRAINING

of training team members will be divided as follows:

Ichbiah Tapes--To be paid for by and then provided by Code 520.

Computer Thought (Hypergraphics) _ disks--To be made available to

entire team and to be paid through NASA centerwide funding.

Informal_teractive Training_Will :be supplied by University of

Maryland personnel and will be covered through the Software Engineer-

ing grant #NSG5-123.

A.3.3 Team Interaction

There will be a close working relationship between the Ada development team and

the Ada experimenter team. This will include periodic meetings to review status,

difficulties, etc., in an attempt to identify additional training needed or to identify

and help in certain problems with the Ada language or methodology.

Although there will be no attempt to completely isolate the FORTRAN team from

the Ada development team, there will be no attempt to encourage interaction.

Formal procedures will be defined whereby requirements change, errors, and gen-

eral modifications will be made known to both teams in the same timeframe and

format. No attempt will be made: to provide questions/answers generated by one

team to the other team. The designs, development methodologies, and general

procedures of one team will not be reviewed by the other team. =......

The only interaction between the FORTRAN team and the Ada experimenters will

be for the experimenters to periodically review the data and information being

recorded by the FORTRAN team

A.4. DEVELOPMENT PLAN

To be able to respond to goals and questions addressed in Section A.1, the process

by which the development team will be prepared and the process that will be in

effect during the development period must be defined.

The specific plan of carrying out the development activities will address training,

data collection, development standards/approach, and configuration control.

A.4.1 Training

As pointed out in reports describing other Ada experimental efforts, training of the

development team is both very critical and very difficult. Responding to

6019
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experiences of other projects attempting to use Ada, an extensive effort is to be

put forth to train the Ada team. The training activities will be broken into four

phases:

Phase 1 (Initial Training)--Approximately a 2-week period will be allot-

ted for the first phase of training. All team members will be provided a

comprehensive text on the Ada methodology ('Software Engineering with

Aria' by G. Booch) and will be assigned some preparatory reading assign-

ments before class meetings and initiated.

After a basic introduction, a 1-week class will be held (full days) where video tapes

(Ichbiah) will be used as instruction material. The 23 tapes are to be reviewed and

discussed. The class leader also directs discussions and assigns sample problems
for reinforcement.

Phase 2--Approximately 3 weeks into the project, all class members are

to attend a formal 3-day course where the overall methodology of Ada is

taught. The course is taught by G. Cherry.

Phase 3--After the 3-day methodology course, the development team will
work with at least one practice problem where they will be required to

design, implement, and test the problem. This will be done under the

supervision of Ada instructor from the University of Maryland

(Beth Katz, Vic Basili). Because the development team will need to be-

gin requirements analysis as well as gain access to a changing Ada envi-

ronment, it is anticipated that this further training will last appropriately
2 to 3 months.

Phase 4--After the design and implementation of the simulator is started,

a continued reinforcement of those points covered in the training classes

will take place. It is anticipated that on an as-needed basis, the team will

meet for additional training under the direction of the University of

Maryland. This training will last for the duration of the project.

A.4.2 Data Collection

Detailed information will be collected in several forms so that the overall experi-

ment may be accurately studied. The following is a description of

• Data to be collected

• Data QA and processing procedures

A.4.2.1 DATA COLLECTION FORMS

Prq_romm¢r/An01y_t Survey--All programmers, managers, and librarians

will complete this form as soon as they begin work on the project. This
includes the Ada team and the FORTRAN team.
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• Resource Summary Form--This form will be completed on a weekly ba-

sis, beginning on January 1, 1985, by all team members and managers.

Total weekly hours expended on the Ada project are recorded. Comput-

er resources will be provided by the librarian through the VAX account-

ing. _

• Comoonent Status Reoort--This form will be completed on a weekly ba-

sis beginning January 1, 1985, by all team members. Personnel devoting

100 percent of their project time to 'management' will not complete this
form.

• Comoonent Origination F0rm--Thls form will be completed whenever a

particular 'component' of the project is identified (design). An Ada com-

ponent is defined as a task, package, or subprogram. The person first

identifying the component is responsible for completing the form.

• Change Report Form (! and 2)--Both the standard SEL change report

form, as well as the added page of questions will be completed by the

Ada team. The forms are to be completed for any change/error defined

after a programmer has completed the component origination form. The

form will be completed by the individual making the change.

• Project Estimation Form--This form will be completed by the project

technical manager every 6 weeks beginning in early January. The form

may be completed in consultation with other team members.

• l_roiect Header File Information F0rm--This form contains all actual

sizes and characteristics of the completed project. It will be completed

once at project completion by the technical manager.

Additional Data--In addition to the forms for collecting data, two addi-

tional sets of information will be saved.

Change/Growth History--Each week, the support librarian will record the

number of lines of code, number of components, and total number of

changes that have been made to the source library.

• Subiective File Data--At the completion of the project, a set of parame-

ters that characterizes the development process and product will be deter-

mined by the managers of the development effort.

A.4.2.2 DATA QA AND PROCESSING

Forms are to be completed and turned into a designated individual within each

organization. These individuals are responsible for both reminding individuals to

provide the data and for doing the first-level QA.
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Designated individuals are

CSC - Bill Agresti

GSFC (520 and 550) - Betsy Edwards
University of MD - Beth Katz

All forms are then to be forwardedto the GSFC coordinator (Betsy) for the next

level of QA. Finally, forms are turned over to the librarian support for entry and

final QA (Barbara and Keith).

The hardcopy is also stored in the SEL library.

A.4.2.3 DEVELOPMENT STANDARDS/APPROACH

The general procedures and standards to be followed by the development team are

called out in the "Recommended Approach to Software Development." This docu-

ment defines such practices as walkthroughs, use of librarian, PDL, and inspec-

tions. Modifications to these guidelines will be defined by the project management

team so that they are not in conflict with the Ada development methodology.

A.4.2.4 CONFIGURATION CONTROL

Both online tool support as well as offline support will be provided for the Ada

development effort. If the DEC-supported Component Management System/Mod-

ule Management System (CMS/MMS) provide support to the Ada library, these
tools or their equivalent will be adapted for use.

In support of the development project, the configuration management process will

be developed and defined by the technical team. They will define procedures for

generating, maintaining, changing, and moving libraries associated with the proj-

ect. It will be the responsibility of the technical leader to see that defined proce-
dures are carried out.

A.5 SCHEDULES AND PRODUCTS

Although the project is tasked with developing a working software product as a

major end-item, the most critical end-item to be developed by the experiment is the

record of experiences and the assessment of Ada as a potential development meth-

odology and development language.

A.5.1 Products To Be Completed

The overall products to be completed and delivered for this project may be consid-

ered to be in three categories:

1. Software products

2. Forms and data

3. Reports and analysis

w
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A.5.1.1 SOFI3VARE PRODUCTS

Although the Ada team possibly may be unable to successfully complete all soft-

ware to the point where a completely integrated, verified simulator exists, the tar-

get still remains to have both teams complete the GRO Dynamics Simulator. Each
team will produce the following software products:

• Software development plan

• Requirements anaiysis report

• Design report

• Completed source code

• Software test plan

• Software development history report

In addition, the FORTRAN Team* will produce:

• Simulator user's guide

• Simulator system description

Formats, timeline, and contents of these reports and documents are defined in the

SEL document "Managers Handbook for Software Development."

A.5.1.2 FORMS AND DATA

Both teams are responsible for generating detailed histories of the development

process by completing the Software Engineering Forms. The description of this
data is found in Section A.4.2.1.

All ,3f the collected derived data will be processed by SEL personnel and then
stored on the SEL data base.

*It will be decided at a later date (July 1986) whether or not the Ada team will

produce these two documents.

A.5.1.3 REPORTS AND ANALYSIS

Because of the magnitude of this experiment, it is anticipated that an extensive set

of reports and papers Will be generated by and for the participants in the experi-

ment. It is the responsibility of the experimenter team to assure that key reports

supporting the analysis of the experiment are completed either by development

team members (Ada and/or FORTRAN) or by the experimenter team.

Although, at this time, the total list of reports and papers that may be generated by

this experiment cannot be developed, the following list of reports is considered a
minimum set:

• "An Experiment with Ada in the SEL" (full SEL document)

• "An Evaluation of Training Approaches for Ada"
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• "An Assessment/Experience with Object-Oriented Design and Process

Abstraction for Software Design"

• "Implications of Ada Methodologies on the Reuse of Software"

• "An Assessment of Ada as Applied to NASA Ground System's" (possi-

bly part of Bob Murphy's PIP)

• "Comparing Characteristics of the Development Life Cycle for an Ada

and a FORTRAN Project"

• "Measuring the Potential of Ada for the Space Station Project" (probably

Bob Nelson's responsibility)

Additional reports will be defined during and after the overall experiment is com-

pleted. It is anticipated that all members of the Ada team as well as all members

of the experimenter team will be responsible for participating in writing portions of

the above reports.

All reports will either become full SEL documents or will be incorporated into the

series of SEL reports, "Collected Papers .... "

One of the major portions of the study will be incorporated into the Ph.D. disserta-

tions of Beth Katz. This may later become a portion of the full SEL report describ-

ing the overall experiment and results.

A.5.2 Schedules and Milestones

Key dates for the experiment are presented as follows.

A.5.2.1 ADA TEAM

Project start

Training complete

Software development plan

Requirements analysis

Complete design

PDR

CDR

Complete code/unit test

Complete integration test

1/1/85

4/1/85

5/1/85

5/1/85

11/1/85

7/1/85

11/1/85

7/1/86

10/1/86
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A.5.2.2

A.5.2.2

Software test plan

Software development history

FORTRAN TEAM

Project start

Software clevelopment plan

Requirements analysis

Complete designs

PDR

CDR

Complete code/unit test

Complete integration test

Software test plan

Complete acceptance test

User's guide

System description

Software development history

GENERAL SCHEDULES

DEC compiler available on 550 VAX

DEC compiler available on 520 VAX

Reports and documents

1.

2.

3.

"Assessment of Ada Training Approaches"

"An Experiment with Ada in the SEL"

Other reports - TBD

5/1/86

12/1/86

2/1/85

1/15/85

3/15/85

4/11/85

6/1/85

1/1/86

5/1/86

12/1/85

10/1/86

1/1/86

1/1/86

12/1/86

5/85

5/85

7/1/86

12/85
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Ada Training Evaluation and Recommendations From the Gamma Ray Observatory Ada

Development Team, SEL-85-002, R. Murphy and M. Stark, October 1985

"Designing With Ada for Satellite Simulation: A Case Study," W. W. Agresti,

V. E. Church, D. N. Card, and P. L. Lo, Proceedings of the First International Sym-

posium on Ada for the NASA Space Station, June 1986

"Towards a General Object-Oriented Software Development Methodology,"

E. Seidewitz and M. Stark, Proceedings of the First International Symposium on Ada

for the NASA Space Station, June 1986

General Object-Oriented Software Development, SEL-86-002, E. Seidewitz and
M. Stark, August 1986

"Towards a General Object-Oriented Ada Life-cycle," M. Stark and E. Seidewitz,

Proceedings of the Joint Ada Conference, March 1987

"Lessons Learned in Use of Ada"-Oriented Design Methods," C. E. Brophy,

W. W. Agresti and V. R. Basili, Proceedings of the Joint Ada Conference, March
1987

Ada_ Style Guide (Version 1.1), SEL-87-002, E. Seidewitz, May 1987

Assessing the Ada _ Design Process and Its Implications: A Case Study, SEL-87-004,

C. Brophy and S. Godfrey, July 1987

"Measuring Ada for Software Development in the Software Engineering Labora-

tory (SEL)," F. E. McGarry and W. W. Agresti, Proceedings of the 21st Annual Ha-

waii International Conference on System Sciences, January 1988

"General Object-Oriented Software Development: Background and Experience,"

E. Seidewitz, Proceedings of the 21st Hawaii International Conference on System Sci-

ences, January 1988

"Lessons Learned in the Implementation Phase of a Large Ada Project,"

C. E. Brophy, S. Godfrey, W. W. Agresti, and V. R. Basili, Proceedings of the
Washington Ada Technical Conference, March 1988

"General Object-Oriented Software Development With Ada: A Life Cycle Ap-

proach," E. Seidewitz, Proceedings of the Case Technology Conference, April 1988

"Experiences in the Implementation of a Large Ada Project," S. Godfrey and

C. Brophy, Proceedings of the 1988 Washington Ada Symposium, June 1988

System Testing of a Production Ada Project: The GRODY Study, SEL-88-001, J. Seigle

and Y. Shi, November 1988
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Implementation of a Production Ada Project:

S. Godfrey and C. Brophy, May 1989

The GRODY Study, SEL-89-002,

Lessons Learned in the Transition to Ada From FORTRAN at NASA/Goddard,

SEL-89-005, C. Brophy, November 1989
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GLOSSARY

z

CDR

CRT

CSC

CSM

ERBS

FDD

GOOD

GRO

GRODY

GROSS

GSFC

I/O

NASA

NSSC

OBC

PAMELA

PDL

PDR

SEL

SLOC

critical design review

cathode ray tube

Computer Sciences Corporation

Composite Specification Model

Earth Radiation Budget Satellite

Flight Dynamics Division

General Object-Oriented Development

Gamma Ray Observatory

GRO dynamics simulator in Ada

GRO dynamics simulator in FORTRAN

Goddard Space Flight Center

input/output

National Aeronautics and Space Administration

NASA Standard Spacecraft Computer

onboard computer

Process Abstraction Method for Embedded Large Applications

program design language

preliminary design review

Software Engineering Laboratory

source lines of code
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The technical papers, memorandums, and documents listed in this bibliography are
organized into two groups. The first group is composed of documents issued by

the Software Engineering Laboratory (SEL) during its research and development

activities. The second group includes materials that were published elsewhere but

pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001 Proceedings From the First Summer Software Engineering Workshop,

August 1976

SEL-77-002 Proceedings From the Second Summer Software Engineering Workshop,

September 1977

SEL-77-004 A Demonstration of AXES for NA VPAK, M. Hamilton and

S. Zeldin, September 1977

SEL-77-005. GSFC NAVPAK Design Specifications Languages Study, P. A. Scheffer

and C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop,

September 1978

SEL-78-006 GSFC Software Engineering Research Requirements Analysis Study,

P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007 Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302. FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Re-

vision 3), W. J. Decker and W. A. Taylor, July 1986

SEL-79-002. The Software Engineering Laboratory:

K. Freburger and V. R. Basili, May 1979

Relationship Equations,

SEL-79-003. Common Software Module Repository (CSMR) System Description and

User's Guide, C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language

(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-

ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,
November 1979
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SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)
System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support Software System

(MMS/GSSS) State-of-the-Art Computer Systems/Compatibility Study, T. Welden,
M. McClellan, and P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop,
November 1980

SEL-80-007, An Appraisal of Selected Cost�Resource Estimation Models for Software

Systems, J. F. Cook and F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM) User's Guide,

J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Workbench Phase 1 Evalu-

ation, W. J. Decker and F. E. McGarry, March 1981

SEL-81-011, Evaluating Software Development by Analysis of Change Data,

D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of

Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engineering Workshop,
December 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engi-

neering Laboratory (SEL), A.L. Green, W. J. Decker, and F. E. McGarry,
September 1981

SEL.81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry,

et al., August 1982

SEL.-81-104, The Software Engineering Laboratory, D. N. Card, F. E. McGarry,

G. Page, et al., February 1982

SEL.81-107, Software Engineering Laboratory (SEL) Compendium of Tools,

W. J. Decker, W. A. Taylor, and E. J. Smith, February 1982

SEL..81-110, Evaluation of an Independent Verification and Validation (IV&V) Method-
ology for Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

SEL-81-205, Recommended Approach to Software Development, F.E. McGarry,

G. Page, S. Eslinger, et al., April 1983
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SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,

D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From

the Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Descrip-

tion (Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,

F. E. McGarry, and M. G. Rohlecler, October 1983

SEL-82-806, Annotated Bibliography of Software Engineering Laboratory Literature,

M. Buhler and J. Valett, November 1989

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page,

D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,

F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables,

C. W. Doerflinger, November 1983

SEL-83-007 Proceedings From the Eighth Annual Software Engineering Workshop,
November 1983

SEL-83-106 Monitoring Software Development Through Dynamic Variables (Revi-

sion 1), C. W. Doerflinger, November 1989

SEL-84-001 Manager's Handbook for Software Development, W.W. Agresti,

F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-003 Investigation of Specification Measures for the Software Engineering Labo-

ratory (SEL), W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004 Proceedings From the Ninth Annual Software Engineering Workshop,
November 1984

SEL-85-001 A Comparison of Software Verification Techniques, D.N. Card,

R. W. Selby, Jr., F. E. McGarry, et al., April 1985

SEL-85-002 Ada Training Evaluation and Recommendations From the Gamma Ray

Observatory Ada Development Team, R. Murphy and M. Stark, October 1985
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SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies:

Metrics, R. W. Selby, Jr., May 1985

Testing, CLEANROOM, and

SEL-85-005, Software Verification and Testing, D.N. Card, C. Antle, and

E. Edwards, December 1985

SEL-85-006, Proceedings From the Tenth Annual Software Engineering Workshop,
December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development,

R. Wood and E. Edwards, Iv[arCh 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and

M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment Tutorial,

J. Buell and P. M)ers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card, October 1986

SEL-86-006, Proceedings From the Eleventh Annual Software Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software

Development, S. Perry et al., March 1987

SEL-87-002, Ada Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003. Guidelines for Applying the Composite Specification Model (CSM),

W. W. Agresti, June 1987

SEL.87-004 Assessing the Ada Design Process and Its Implications: A Case Study,

S. Godfrey, C. Brophy, et al., July 1987

SEL.87-008 Data Collection Procedures for the Rehosted SEL Database, G. Heller,
October 1987

SEL-87-009 Collected Software Engineering Papers: Volume V, S. DeLong,
November 1987

SEL..87-610 Proceedings From the Twelfth Annual Software Engineering Workshop,

December 1987

SEL-88-001 System Testing of a Production Ada Project:

J. Seigle, L. Esker, and Y. Shi, November 1988
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SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase

Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study,

S. Godfrey and C. Brophy, September 1989

SEL-89-003, Software Management Environment (SME) Concepts and Architecture,

W. Decker and J. Valett, August 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area:

Implementation�Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark,
and F. McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/

Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,
November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users' Symposium, November 1989

SEL-89-101, Software Engineering Laboratory (SEL) Database Organization and

User's Guide (Revision 1), M. So, G. Heller, S. Steinberg, K. Pumphrey, and

D. Spiegel, February 1990

SEL-90-001, Database Access Manager for the Software Engineering Laboratory

(DAMSEL) User's Guide, M. Buhler and K. Pumphrey, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Proj-

ect Description and Early Analysis, S. Green et al., March 1990

SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering

Laboratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-
ment Summary, T. McDermott, September 1990
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